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ABSTRACT 
The dominant Tcl object paradigm is "objects are ensemble 
commands".  However, the call-by-name semantics associated 
with this paradigm are not always appropriate.  Type-definition 
objects provide a simple way to combine complex object behavior 
with call-by-value semantics.  A type-definition object is an 
ensemble command which defines the operations available for a 
type whose values are represented as standard Tcl values.  
Operations include creating new values, modifying values, 
querying values, conversion of values from other types, validation 
of values, and so forth.  A type-definition object can be a 
singleton, as in a "matrix" command which defines a variety of 
operations on general matrices represented as lists-of-lists; the Tcl 
8.5 "dict" command and the family of "list" commands can be 
regarded as examples of type definition singletons.  Type-
definition objects can be also be parameterized instances of a class 
of type definitions; objects of this kind can define ranged numeric 
types, enumerations, and other constrained types.  This paper 
presents a number of type definition objects implemented as part 
of the Joint Asymmetric Warfare Simulation (JAWS). 
 
1. VALUE AND OBJECT SEMANTICS 
It is commonly said that in Tcl, “everything is a string.”  And it is 
true that in a Tcl program, every entity has a string representation 
of some kind—but not all string representations convey the same 
amount of information.  Some strings have value semantics, while 
others have object semantics. 
 
A Tcl list is a classic example of an entity with value semantics.  
A Tcl list is a data value.  Represented efficiently as an array 
internally, a Tcl list can be converted to and from its string 
representation without loss of information.  It can be stored in a 
variable, passed from one procedure to another, written to a 
channel and read back again, and when it is no longer needed Tcl 
releases the memory automatically.  Moreover, it is a chameleon: 
one and the same value can be a list, a string, a dictionary, a 
command to be evaluated, a stack to be pushed or popped, a 
record of data, a vector, or any number of other abstractions. 
 
Most Tcl values share this ability to shift whimsically from one 
data type to another.  Consider the value “99”.  It might be a two-
character string, it might be a decimal integer, it might be a 
hexadecimal integer, it might be an index into a hash-table, or it 
might be a handle to some opaque data structure implemented in 
C code.  It can be any or all of these things, and it can switch 
effortlessly from one use to another in successive lines of code, or 
even in the same line of code. 
 
The one thing Tcl values lack is any kind of intrinsic behavior.  
Tcl values are not objects; they do not have methods.  You can 
treat any Tcl value as a string; to go beyond that, you need to 
know something about the nature and provenance of the value. 
 

Finally, Tcl values are transparent.  Because every Tcl value has a 
canonical string representation, you can always see precisely what 
the value is. 
 
Objects, by contrast, combine data and behavior into a single 
entity. The dominant object paradigm in Tcl is that pioneered by 
the Tk widgets: an object is represented as a Tcl ensemble 
command, that is, a command whose first argument is a 
subcommand and whose remaining arguments vary by 
subcommand.    
 
An object’s string representation is simply its name, which 
functions much like a pointer in conventional languages.  The 
object name is a Tcl value which can be stored in a variable, 
passed to procedures, printed out and read in again, and so forth, 
just like any other Tcl value; yet, like a pointer it gives access to 
the object’s behavior and associated data.  Such pointer-like 
semantics are extremely useful, but in terms of data representation 
they come at a price: objects are opaque.  Their data is stored 
inside, in either C data structures (for objects like Tk widgets and 
images) or hidden Tcl variables (for objects implemented using 
Snit1 or some other pure-Tcl object framework).  A program must 
use the object’s methods to access the internal data—or, rather, 
that subset of it which is externally accessible.  Thus, printing out 
an object or saving it to disk—that is, serializing it—is a tricky 
proposition for which there is no one-size-fits-all solution.  
Indeed, not all objects can be serialized in any meaningful way. 
 
Another disadvantage of objects is the need for explicit memory 
management.  Unlike a Tcl value, whose memory is released 
automatically when  the value is no longer needed, a Tcl object 
must be explicitly destroyed.  Further, with explicit memory 
management comes ownership management: the programmer 
must always keep in mind which module owns the object at each 
moment in its lifetime.  Code that manipulates values can copy 
them and modify them as it pleases; code that manipulates objects 
must always be written with an awareness of which module owns 
the object and has the right to destroy it. As a result, Tcl objects 
(however implemented) are a poor choice for representing 
lightweight, short-lived data entities with value semantics. 
 
How, then, should we associate behavior with our data values?  
The classic OO approach is to encapsulate the value within an 
instance of a class; but this is often unpleasantly heavy-weight in 
Tcl. We are left with a dilemma: values have transparency and 
value semantics, but have no behavior; objects have behavior, but 
lack transparency and value semantics and add increased 
management overhead. 
 
The solution is to take a step backward from OO, and separate the 
code from the data. 
 



 

2. TYPE DEFINITION SINGLETONS 
The classic Tcl approach to combining behavior with value 
semantics is the procedurally-based abstract data type.  The 
canonical example is the family of Tcl list commands: list, lindex, 
lappend, and so forth.  This approach is now frowned on, at least 
in the Tcl core, because it pollutes the global namespace with an 
ever expanding number of new commands. 
 
The modern approach is the type-definition ensemble, of which 
perhaps the best example is Tcl 8.5’s new dict command.2  This 
approach is functionally equivalent to the procedural approach, 
but the myriad of individual operations are implemented as 
subcommands of a single ensemble command, rather than as 
individual procedures: thus, dict append adds keys and values to 
a dictionary, dict get retrieves a value given its key, dict set 
replaces a key’s value with a new value, and so on. 
 
The advantages of this approach are three-fold.  First, additional 
subcommands can be added as needed without any chance of 
name collisions with application-defined procedures.  Second, 
there is only one command name to remember, which simplifies 
looking things up in the documentation.  This advantage is often 
overlooked, but it should not be scorned: because of Tk's reliance 
on ensembles (and, in some cases, sub-ensembles), the Tk 
documentation is simultaneously concise, dense, and easy to use.  
Third, the commands needed to manipulate values of the type are 
packed into a single entity which has object semantics: it is 
referred to by a single name, which can be passed from procedure 
to procedure, stored in variables, and so forth.  Because of this last 
property, a type-definition ensemble can be thought of as an 
object: a type-definition singleton. 
 
2.1 Implementing Type-Definition Ensembles 
Implementing a type-definition ensemble is a bit of a chore, 
simply because implementing well-behaved ensemble commands 
in pure Tcl is a bit of a chore.3  Until recently, the easiest 
approach has been to note that any ensemble command can be 
regarded as a singleton object.  Hence, one can define a class with 
the required subcommands as its methods, and define a single 
instance of the class; the instance is your ensemble.  Alternatively, 
a Snit type with no instances makes a decent ensemble; here, for 
example, is a complete implementation of Tcl 8.5’s dict command 
using Snit (the pragmas ensure that the resulting ensemble has no 
extraneous subcommands): 
 
snit::type mydict { 
    pragma –hasinstances 0 
    pragma –hastypeinfo 0 
    pragma –hastypedestroy 0 
    delegate typemethod * using "::dict %m" 
} 
 
mydict is now a drop-in replacement for dict.  Of course, it will 
only work properly in Tcl 8.5 and later.... 
 
Tcl 8.5’s new namespace ensemble4 command will be extremely 
helpful in this regard; with one line of code, a procedural interface 
defined in a namespace can be magically turned into an efficient 
ensemble command with decent error messages. 
 

3. TYPE-DEFINITION CLASSES 
Implementing a type-definition ensemble as a singleton object has 
some interesting implications.  Suppose you want to define a 
bounded numeric type—probabilities, say, which are bounded 
between 0.0 and 1.0.  You could define  a Snit type: 
 
snit::type probability { 
    variable p 0.0 
 
    method set {value } { 
        if {$value < 0.0 || $value > 1.0 } { 
            error "out of range" 
        } 
 
        set p $value 
    } 
    method get {} { return $p } 
} 
 
You could do that, but you'd be sorry, for all the reasons described 
in Section 1; for example, you can't use a probability represented 
in this way in an expr expression as easily as you can a 
probability represented as a floating point value.  Not only does 
using a floating point value simplify your code, you'll generally 
know when you're dealing with a value that's a probability; there 
will be times when you'll need to verify that a putative probability 
value is a numeric value within the proper range, but you 
shouldn't need to do it every time you save a newly computed 
probability value.  
 
Consequently, you'd much prefer to represent probabilities as 
normal Tcl values, which implies you might need a type-
definition ensemble for probability specific behavior.  Such an 
ensemble would have a method for verifying that a probability is 
both numeric and in range: 
 
snit::type probability { 
    typemethod inrange {p } { 
        if {![string is numeric $p]} { 
            return 0 
        } 
 
        expr {0.0 <= $p && $p <= 1.0} 
    } 
 
    ... 
} 
 
if {[probability inrange $p]} { 
    ... 
} 
 
We now have a singleton object which verifies that numeric 
values are between zero and one.  But suppose that there are a 
number of bounded numeric types of interest; we could define a 
type called bounded whose instances are parameterized with the 
desired minimum and maximum values.  We would then have the 
ability to easily create a new type-definition ensemble for any 
range that takes our fancy: 
 



 

bounded probability –min 0.0 –max 1.0 
bounded percentage  -min 0   -max 100 
 
set prob 0.5 
set pct  50 
 
if {[percentage inrange $pct]} { 
    ... 
} 
 
if {[probability inrange $prob]} { 
    ... 
} 
 
bounded may be termed a type-definition class.  Instances of type 
bounded are type-definition objects.  In a sense, they give us the 
best of both worlds.  The types defined by bounded are normal 
Tcl values, with all of the advantages of value semantics; but all 
of the knowledge of how to use and manipulate values belonging 
to the the type is neatly encapsulated in an object which has object 
semantics.  The type name (i.e., the name of the type-definition 
object) can be stored in a variable, passed to procedures, and used 
to parameterize other objects; or it can simply be defined as a 
global command, thus extending the range of types accessible to 
the entire application.   
 
Moreover, because all instances of the type-definition class have 
the same operations, values of the defined types can be handled 
generically.  Consider a table of named values which is to be read 
from a file: 
 
     prob1   0.5 
     prob2   0.3 
     pct1    57 
     pct2    23 
 
The code to read and validate this table can be made completely 
generic simply by specifying a schema dictionary: 
 
set schema { 
    prob1  probability 
    prob2  probability 
    pct1   percentage 
    pct2   percentage 
} 
 
This schema identifies the names of all valid table entries, and the 
type of each, with maximum clarity. 
 
4. EXAMPLES 
This section describes a number of type-definition singletons and 
classes used in the Joint Asymmetric Warfare Simulation 
(JAWS).  The implementation is not shown (and indeed, it's rarely 
all that complex); of more interest is the style of programming 
which they enable. 
 
4.1 Matrices 
At the core of JAWS is a mathematical model of factions within a 
civilian population; it involves the relationships between the 
factions, as well as each faction's satisfaction level with respect to 
a number of concerns. The model involves a variety of matrices.  
The computational requirements are modest enough that there's no 

need to implement the matrix code in C, or use one of the C-coded 
numerical extensions; on the other hand, there's no reason to 
waste cycles either.  Tcl lists are implemented internally as C 
arrays; a matrix implemented as a list of lists and accessed with 
lindex and lset is more efficient than a matrix implemented as a 
Tcl array with indices like "$i,$j".  
 
JAWS defines a type-definition singleton, mat, for creating and 
initializing such matrices; it also provides a number of matrix 
computations and output operations.  Here's a subset of mat's 
subcommands: 
 
mat new m n ?initval? 

Creates a new matrix of m rows and n columns whose 
elements are initialized to initval, which itself defaults to the 
empty string. 

 
mat rows matrix 
mat cols matrix 

Returns the number of rows and columns in the matrix. 
 
mat add matrix1 matrix2 

Returns a matrix that's the sum of matrix1 and matrix2.  
 
mat format matrix fmtstring 

Applies format fmtstring to each element of matrix and 
returns the resultant matrix. 

 
mat pprint matrix rlabels clabels 
mat pprintf matrix rlabels clabels fmt  
mat pprintq matrix rlabels clabels quality 

Each of these operations returns a text string containing the 
pretty-printed contents of the matrix.  rlabels is a list of row 
labels and clabels is a list of column labels; fmt is a format 
string used to format each entry, and quality is the name of a 
quality object, of which more below. 

 
mat doesn't define subcommands for setting and retrieving matrix 
elements; lindex and lset work perfectly well, and although mat 
could define subcommands that call lindex and lset there's no 
reason to pay the performance penalty. 
 
4.2 Vectors 
JAWS defines a type-definition ensemble, vec, for manipulating 
vectors.  A vector value is simply a Tcl list; like mat, vec doesn't 
define its own version of the basic list operations, but instead 
defines operations specific to numeric vectors.  The supported 
capabilities are analogous to those of mat; in addition, mat has 
subcommands which pull vectors out of matrices. 
 
4.3 Enumerations 
 
An enumeration is a mapping from symbolic constants to integers.  
Often a set of distinct constants is all that's required, and the 
mapping to integers is unimportant; Tcl programmers usually use 
a set of strings in such cases, and never define any explicit 
mapping to integers.  In other cases, though, the mapping to 
integers is vital.   
 
JAWS uses enumerations to define the rows and columns of the 
matrices in its mathematical model: each row index and each 



 

column index is associated with a specific symbolic constant.  For 
efficiency, numerical code needs to identify the rows and columns 
using numeric indices; for input and output, the mapping from 
symbols to integers and back again needs to be readily available.  
Consequently, JAWS defines a type-definition class called 
enumeration; instances of the class are type-definition objects 
which define specific enumerations.  For example, JAWS models 
different factions in the civilian population; suppose there are 
three factions, A, B, and C: 
 
enumeration faction { 
    A  "Faction A" 
    B  "Faction B" 
    C  "Faction C" 
} 
 
The resulting type-definition object is called faction; note that 
each value in the enumeration has two names, a short name ("A"), 
and a long name ("Faction A").  The range of values of the type 
defined by faction consists of the long and short names listed 
above and the numeric indices 0, 1, and 2.  The following are 
some of faction's subcommands: 
 
faction index value 
faction shortname value 
faction longname value 

Returns the numeric index, short name, or long name 
associated with the value, which may have any of the forms 
listed above: short name, long name, or numeric index.  If the 
value isn't valid for the type, faction throws an error. 

 
faction size 

Returns the number of distinct values in the enumeration, 
i.e., 3. 

 
faction shortnames  

Returns a list of the type's short names. 
 
faction longnames 

Returns a list of the type's long names. 
 
In short, all of the knowledge about this enumerated type is 
encapsulated in a single named object which can be passed as an 
argument. 
 
The faction names don't figure into JAWS' mathematical model, 
but the model code still needs to know them to support input and 
output.  JAWS's computational engine is implemented as an 
object type; because enumerations can be represented by name, 
each instance of the engine can easily be given a different set of 
factions. 
 
Note that the set of factions is not hardcoded, but is read from an 
input file; there's no reason why enumerations like faction need to 
have known definitions at implementation time. 
 
4.4 Qualities 
 
One of the inputs to JAWS is an initial value for the satisfaction 
of each faction with respect to a number of concerns; a 
satisfaction value is a number ranging from 100.0 to -100.0.  To 
make populating the database easier, we provide a rating scale: 

 
 VS Very Satisfied 80.0 
 S Satisfied 40.0 
 A Ambivalent 0.0 
 D Dissatisfied -40.0 
 VD Very Dissatisfied -80.0 
 
On input, the user can enter a symbolic constant, which will be 
converted to the relevant number, or a specific number within the 
range 100.0 to -100.0, which we can either accept as is or replace 
with one of the numbers listed above.  Further, given a numeric 
satisfaction value, we often wish to relate it to the nearest 
symbolic constant for output. 
 
JAWS uses a total of nine different rating scales of this kind; each 
scale is defined by an instance of the quality type.  For example, 
 
quality qsat { 
    VS "Very Satisfied"     80.0 
    S  "Satisfied"          40.0 
    A  "Ambivalent"          0.0 
    D  "Dissatisfied"      -40.0 
    VD "Very Dissatisfied" -80.0 
} –min -100.0 –max 100.0 –format "%6.3f" 
 
Unsurprisingly, this is similar to an enumeration definition; it 
adds a column for the numeric equivalents for each symbolic 
constant, and also has several options: the valid range for numeric 
satisfaction values is given, and a format string defines the 
standard output format and precision for values of the quality 
type. 
 
A quality object like qsat has all of the subcommands that an 
enumeration does, i.e., index, shortname, longname, size, 
shortnames, longnames; in addition, it has the following 
subcommands: 
 
qsat format value 

Formats a numeric satisfaction value using the –format 
format string. 
 

qsat value value 
Returns a numeric satisfaction value corresponding to value.  
If value is a long or short name, the associated numeric value 
is returned.  If value is already numeric, and is within the 
valid range for the type, it is returned unchanged.  An error is 
thrown for any other input. 
 

qsat strictvalue value 
This is equivalent to qsat value, except that numeric inputs 
are mapped to one of the specific numeric values specified in 
the type definition. 
 

qsat inrange value 
Returns true if value is numeric and in the valid range, and 
false otherwise. 
 

qsat clamp value 
Clamps the value within the valid range, i.e. if value is 101.0 
then 100.0 is returned.  Numbers within the valid range are 
returned unchanged. 

 



 

4.5 Interactions Between Types 
 
These type-definition objects pack a considerable amount of 
knowledge into a small package, and as such are useful all on 
their own.  However, the real payoff comes when they are used in 
tandem. 
 
For example, JAWS defines a large number of matrices whose 
indices are defined by enumerations and whose values are defined 
by qualities.  A satisfaction matrix, for instance, has rows indexed 
by a concern enumeration, columns indexed by a faction 
enumeration, and elements defined by the qsat quality.  The mat 
type-definition ensemble defines two operations which support 
this pattern directly. 
 
The first is mat numerize.  Given a matrix of quality values, 
which may be symbols or numbers, and the name of the quality, 
mat numerize converts all matrix elements into numbers, and 
along the way validates them with respect to the quality: 
 
% set a { 
    {VS VD } 
    {D  A  } 
} 
% set b [mat numerize $a qsat] 
{80.0 -80.0} {-40.0 0.0} 
% 
 
The second is mat pprintq.  This operation pretty-prints a matrix 
just as mat pprint does, but uses a quality object to include both 
symbolic and numeric values for each element. 
 
% mat pprintq $b \ 
    [concern shortnames] \ 
    [faction shortnames] \ 
    qsat 
               A           B 
CON1  VS= 80.000  VD=-80.000 
CON2   D=-40.000   A=  0.000 
% 
  
5. TRANSPARENT OO FOR TCL 
Neil Madden has been pioneering “Transparent OO for Tcl,”5 
which indeed succeeds in adding object-like behavior to 
transparent data values.  A transparent object, or “TOOT” is a list 
whose first element is a command that implements the object’s 
behavior.  Tcl’s unknown command is extended to handle such 
lists in a special way: when a TOOT appears as the first token in a 
command, unknown calls the command whose name is 
embedded in the TOOT, passing it the TOOT itself followed by 
any additional arguments.  The TOOT’s command then has access 
to the TOOT’s data, and can dispatch methods based on the next 
argument in the usual way. 
 
This is an ingenious scheme, but it has two drawbacks, one of 
them fatal.  The first is simply that TOOT values lose that 
chameleon-like flexibility, simply because the TOOT type’s 
command name is embedded in the TOOT value: “90210” might 
be a string, an integer, or a ZIP code, but “::Zip | 90210” can only 
be a ZIP code. 
 

The fatal drawback, however, is runtime efficiency; in practice, 
unknown-based dispatch is horribly slow, which makes it 
unsuitable for precisely those lightweight uses for which 
traditional objects are unsuitable.  Nevertheless, the technique is 
worth remembering; and it’s possible that future versions of Tcl 
will provide faster mechanisms for TOOT method dispatch.  In 
the meantime, the techniques described in this paper for defining 
behavior for transparent Tcl values are superior in practice. 
 
6. CONCLUSIONS 
 
Type-definition ensembles are an established Tcl idiom for 
encapsulating behavior for Tcl data types with value semantics.  
Given an object system, type-definition classes and type-
definition objects are a natural way to create families of type-
definition ensembles.  Because type-definition objects encapsulate 
knowledge about a type within a single command, they can be 
used to write generic algorithms which will apply to values of any 
type within a well-defined family.  Because they can be defined at 
run-time based on application input, they are a convenient 
mechanism for describing, validating, manipulating, and 
formatting values based on user-defined schemas.  And given the 
availability of multiple choices of object framework in the major 
Tcl distributions, there's no reason not to use them. 
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